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TWO- AND THREE-DIMENSIONAL LOW-FREQUENCY RADIATION FROM AN ARBITRARY SOURCE

IN A FLUID-FILLED BOREHOLE 

By Myung W. Lee

ABSTRACT

Far-field displacement fields were derived for an impulsive point force 
acting on a fluid-filled borehole wall under the assumption that the borehole 
diameter is small compared to the wavelength involved. The displacements due 
to an arbitrary source can be easily computed by combining the solutions for 
the impulsive sources.

In general, the borehole source generates not only longitudinal and 
vertically polarized shear waves but also horizontally polarized shear waves. 
This study also indicates that only the axis-symmetrical motion around the 
borehole due to normal stress is affected by the presence of the fluid in the 
borehole. The tangential stresses acting on a fluid-filled borehole do not 
affect the radiation into the surrounding medium due to the presence of the 
fluid in the long-wavelength limit.

INTRODUCTION

The far-field radiation pattern from a seismic source inside a 
fluid-filed borehole is very important in understanding not only the effect of 
the borehole fluid on the seismic radiation but also the characteristics of 
the different borehole sources. Recently, Lee and others (1984) observed an 
anomalous radiation pattern from a downhole airgun source during a 
well-to-well vertical seismic profiling experiment and concluded that the 
borehole fluid had a substantial effect on the measured seismic radiation 
patterns. Current development of vertical seismic profiles necessitated a 
better understanding of the borehole sources as well as the borehole and fluid 
effect on the measured seismic signal.

This investigation focuses on the derivation of the far-field seismic 
radiation pattern from an arbitrary source acting on the wall of the 
fluid-filled borehole under the assumption that the borehole diameter is very 
small compared to the wavelengths of interest.

Heelan (1953) discussed P- and S-wave radiation pattern from 
axis-symmetric borehole sources acting on the wall of an empty borehole. Lee 
and Balch (1982) derived the far-field radiation pattern from axis-symmetrical 
sources in a fluid-filled borehole and discussed in detail the effect of the 
borehole fluid on the seismic radiation into the surrounding medium. White 
and Sengbush (1963) also formulated the effect of borehole fluid on the 
seismic radiation pattern combining Heelan f s solution with the tube wave 
inside the borehole. All of the above-mentioned authors treated only the 
axis-symmetrical waves propagating around the borehole under the low-frequency 
assumption.

White (1960) derived the far-field radiation pattern from radial and 
tangential pairs of forces acting on the wall of an empty borehole using a 
seismic reciprocity theorem. Greenfield (1978) obtained the seismic 
displacement fields from a point force applied to the surface of a cylindrical 
cavity in an elastic medium without any assumption about the size of a 
borehole relative to the wave length.
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In this investigation, the three scalar potentials, which describe the 
elastic wave propagation in the surrounding medium, were formulated using an 
infinite sum of Bessel functions and the complex Fourier transform. Retaining 
the terms proportional to a and a (where "a" is the radius of the borehole) , 
and expanding the azirauthal dependence of the source function into the complex 
Fourier series, exp(ipO), it is shown that only P = 0, 1, and 2 terms are 
needed to describe the seismic radiation around the borehole under the 
low-frequency assumption.

Two-dimensional radiation patterns and some mathematical details are 
enclosed in the appendix.

DERIVATION OF THE SOLUTION

Consider a cylindrically circular, fluid-filled borehole with a radius 
"a" in a homogeneous elastic medium of density p , compressional speed a , 
and shear speed $ . The fluid medium has a compressional velocity cx f and 
density P^ . The elastic wave field inside the fluid-filled borehole can be 
described by a scalar potential $"* , and the elastic wave propagating around 
the borehole can be represented by three scalar potentials ( $ , ^ , X ) .

The three scalar potentials in the surrounding medium can be written as 
the following formula in the frequency domain (e. g. , Harkride, 1964):

/3»

and in the fluid the potential is given by

In a cylindrical coordinate system (r, 0, z) , shown in figure 1, the 
displacement field can be derived from the scalar potentials by the following 
formulae. In the surrounding medium, U , U_, and U , (r, 0, and z direction 
displacement, respectively) are: z

(2)



Figure 1. Coordinate system for solution. An orthogonal cartesian 
coordinate (x, y, z), a cylindrical coordinate system (r, 0, z) , 
and a spherical coordinate system (R, 0, 0) are shown



The solutions of the displacement potentials in the surrounding medium 
may be written, imposing the radiation boundary conditions, as:

60

= H

and

X =

(2)
In equation (3), H is the second kind of Hankel function of order P,

P

and the radial wave numbers m and n are given by:

Inside the fluid-filled borehole, the potential can be written as

In equation (4), J is the Bessel function of order p, and % is given by
P

The value of p should be taken only integer values in order that the 
displacement fields are single valued functions of the azimuthal angle 0. The
unknown constants A , B , and C can be evaluated by applying appropriate

P P P
boundary conditions on the wall of the fluid-filled borehole.



The usual boundary conditions to be satisfied on the borehole wall, at r 
a, are:

4- - 4-' = e>

(5)

In equation (5), P.. is the stress component in the cylindrical 

coordinate system and 6 (z) is the Dirac delta function, and T (9), i = r, z, 

or 9, is the source stress acting on the borehole wall as a function of 9. The 

primed quantities in equation (5) represent the quantities in the fluid.

The stresses appropriate in solving boundary conditions are:

Here X and y are Lame's constants and relate to the seismic velocity as

/ 



The first term of equation (5) requires the continuity of the radial 
stress at the borehole wall, and the remaining three terms require the 
continuity of the stresses acting on the borehole wall. Because the shear 
modules y in the fluid are assumed to be zero, the boundary conditions for

the tangential stresses (P and P fl ) are identical to those for the empty 
borehole.

Let's define the radial stress on the borehole wall as:

06 -/u (7)

for the unknown constants A , B , C , and D can be represented by the
P P P P

Defining the other tangential stresses like the radial stress, the solution 
for the unknown constants

following matrix equation.

o

9

O
-2TTJ*.

(8)



The matrix elements of g of G are given by

=: if> /A

(9)



The E^ in equation (7) or (8) can be derived using the complex Fourier 
P

series expansion of the stress function, and given by:

(10)

Equations (2), (3), and (9) provide exact solutions for the borehole 
sources acting on the fluid-filled borehole wall.

LOW-FREQUENCY APPROXIMATION

The exact solution of the matrix equation shown in equation (8) consists 
of the infinite series of terms with increasing periodicity around the 
borehole. The coefficients of the unknown constants A , B , C , and D should 
be solved for each value of p. P P P P

When the borehole radius is very small compared with the wavelengths of

interest, the coefficients A , B , C , and D can be expanded in terms of
P P P P

2 parameter a. If terms proportional to a and a are kept for the solution,

only p = 0, p = + 1, and p = +2 are required. In the following, the 

approximate solution for equation (8) is presented for each p.

A. p = 0. When p = 0, the solutions are independent of the azimuthal 
angle, which are axis-symmetrical solutions. For this case, Lee and Balch 
(1982) derived the solution for the radial stress source in a fluid-filled 
borehole, and Heelan (1953) derived the far-field radiation for the radial and 
tangential stresses acting on an empty borehole.

Retaining only the dominant terms of the matrix equation (8), the 
zero-order solution can be written as:

C

o
*£*( **-*?)

O
-GL

5
o

\ /

(11)



where

For an empty borehole, which is p = 0 in equation (11), the solutions 
are identical to the Heelan's (1953) derivation. In a radial stress source in

the fluid-filled borehole, this solution is identical to Lee and Balch (1982).

When p » 0, the D~ term, which is appropriate to the solution in the 

fluid, is included as a solution, because only in this case does the fluid in 

the borehole affect the radiation in the surrounding medium.

Substituting DQ into equation (4), we find that the poles of the integral 

are determined by T =0. This pole corresponds to the tube wave velocity in 

the low-frequency limit, and this proves the existence of the tube wave in the 

fluid-filled borehole (Balch and Lee, 1984). Equation (11) also indicates 

that only normal stress, T , can generate the tube wave in the borehole. The 

above observation implies that "tube wave" in the fluid-filled borehole, which 

is caused by the cross-sectional area change of the borehole, can affect the 

seismic radiation pattern in the surrounding medium.

B. p = 4-1. The determinant of matrix G , A , can be written as:

where A.. is the minor of g...



The leading term analysis of the determinant indicated that the first 
term is dominant for the solution when p J> 1. This implies that the solution 
outside the borehole is independent of the fluid in the borehole. In other 
words, when p 2. 1» tne solution for the fluid-filled borehole is identical to 
the solution for the empty borehole.

If only the leading terms of the matrix element are used, the
determinant, when P >_ 1, is proved to be identical to zero. One way to derive 
non-zero determinant in order to solve equation (8) is including the next 
order terms in the expansion of the matrix element. For example, when p = 1, 
the g. term can be expanded as:

where Q is the leading term of H(2) (ma).

After some lengthy algebra, the solution for p = 1 can be written as:

\

-/ \ *v (12)

 < ^o  * P
A^'L ^

-4,

In equation (12), the matrix elements with the parentheses indicate the

terms which changes the algebraic sign for p = -1.
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C. p = +2. Applying the same method as for p = +1, the solution is 
given by:

3.TJ/L

E*

(13)

Like the p = +1 case, the matrix elements with a parenthesis denotes the terms 
which changes the algebraic sign when p = -2.

FAR-FIELD APPROXIMATION

Substituting equations (3), (11), (12), and (13) into equation (2), the 
displacement field can be evaluated under the low-frequency approximation. 
When an observation point is very far from the source region, the far-field 
radiation can be formulated simply by applying the following formula to the 
equation (3).

(14)
I

where R, 0, 9, is the spherical coordinate system.
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Retaining the 1/R decay terms and the coordinate transformation, the 
far-field radiation in the spherical coordinate system can be written as:

R

/?=/ 

e*'

-*4*
"i * 7T ' ^3 /^ v -/ ^* v /5/N % n \ <O

/ /

U& =  -   -
R I

, j^ r~) C>^c<p(z5y(^ -Se
^    / /* C 
/>=/

r z 
Here, S =1, when the source stress function is given by E or E , and

S = -1, when the source stress function is given by E6« 
t 12 p



Finally, the far-field, low-frequency approximated solutions for the 
impulse-like borehole sources in the fluid-filled borehole retaining only a

2 and a terms with 1/R decay can be written as:

A) T (0) is given and defined as T (6) - T 6(0).

e

(16)

(X
4

T = ~ 'r

(b t
>/^

'  )

13



where

c&i-p s
/3 1 }.

B) T (B) is given and defined as T (9) = T 6(9) z z z

#

_ I HO.

3*- J"
/ e

(17)
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where

C) T_(9) is given and defined as T.(9)_
tJ

.
tJ

/?
^y

«3  

c /-

~ ~£L ^>^

r X

(18)

where
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DISCUSSION

As mentioned previously, the zero-order solution (p - 0) from the normal 
stress acting on the wall of the fluid-filled borehole has a fluid effect on 
the seismic radiation into the surrounding medium. The detailed description 
of this case can be found in Lee and Balch (1982). Also when the tangential 
stresses act on the fluid-filled borehole, the radiation into the surrounding 
medium is independent of the fluid in the borehole under low-frequency 
assumption.

As shown in equations (16), (17), and (18), the radiation pattern is a 
function of frequency, thus the propagating wave changes its waveform 
depending upon the frequency content of the source function. Table 1 shows 
magnitude and phase angle of the radial displacement from an impulsive 
tangential stress, Tft , with 0 - 90 and 9 = 45 . This radiation was computed 
assuming a Poisson's solid with a = 10 cm and a - 2,357 m/s. At 300 Hz, the 
amplitude is about 0.6% higher than that at 0 Hz, and its phase angle is about 
6.5 . This example indicates that the frequency dependence of the radiation 
could be ignored for normal seismic exploration purposes.

The solutions presented in equations (16), (17), and (18) offer a simple 
way to compute radiation patterns for an arbitrary source acting on the wall 
of the fluid-filled borehole. By performing the complex Fourier series 
expansion of the source function and substituting only p - 0, 1, and 2 terms 
of the series expansion into equations (16), (17), and (18), the 
long-wavelength, far-field radiation patterns can be easily obtained.

For example, consider the source distribution shown in figure 2. Three 
equal normal stresses 120 degrees apart act on the fluid-filled borehole wall. 
The total displacement fields from this source distribution can be derived 
simply by summing the individual contribution. That is:

/v

where the quantity with /^/ denotes the total displacement field from the three 
normal stresses. Using the trigonometric relation such as:

=  O

the far-field displacement field can be written as:

rJ LJ. \
ta ^\% - -Ttf
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Table 1. Magnitude and phase angle of the U component with 0 = 90 

and 0 = 45 from an impulsive tangential stress at 0 - 0

Frequency 
(Hz)

0

25

50

75

100

125

150

175

200

225

250

275

300

Amplitude

1.000

1.000

1.0002

1.0004

1.0007

1.0011

1.0016

1.0022

1.0028

1.0036

1.0044

1.0054

1.0064

Phase 
(degree)

0.00

0.54

1.18

1.62

2.16

2.70

3.23

3.77

4.31

4.85

5.38

5.92

6.45
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The radiation pattern from this source distribution, shown in figure 2, 
is identical to that from the uniform stress distribution on the borehole 
wall.

This example illustrates the simplicity in computing radiation patterns 
for arbitrary borehole sources.

When T_(9) = T_6(9), which is single force, the radiation patterns of P- 
" o

and SH-waves in the X-Y plane (0 = 90°) are shown in figure 3 with a Poisson 
solid and CO = 0. The P-wave radiation is proportional to cos9 and the 
SH-wave radiation pattern is proportional to sin9. The maximum displacement 
amplitude of the SH-wave is 3 times greater than that of the P-wave.

When TQ(9) = T 6(9) + T 6(9 + 180°), which is double forces at the

opposite side of the borehole, the radiation patterns are shown in figure 3 
with a Poisson solid. Because of the property of the trigonometric function, 
the p = 1 solution is cancelled; thus only p = 0 and p = 2 solutions are 
retained. As can be seen from figure 4, P-wave radiation is almost negligible 
compared to the SH-wave motion. The displacement waveform for the single 
force is the same as the source stress waveform, while the displacement 
waveform for the couple forces is the derivative of the source waveform.

CONCLUSIONS

In this paper, the far-field radiation patterns from an impulsive source 
acting on the wall of the fluid-filled borehole were derived under the 
assumption that the borehole radius is very small compared to the wavelength 
of interest. The following conclusions can be made from this investigation:
1. The radiation patterns from a point force, or point stress, are almost 
independent of frequency within the seismic frequency band.
2. The fluid effect on the radiation pattern into the surrounding medium can 
be detected for the axis-symmetrical waves propagated around the borehole only 
when the normal forces are acting on the wall.
3. In general, the borehole sources generated not only P- and SV-waves but 
also SH-waves around the borehole.
4. Combining the solutions from the impulsive sources, the radiation 
patterns from an arbitrary source can be easily obtained.
4. Applying the seismic reciprocity theory, the solution could be used to 
evaluate the wall motion from the plane waves incident on the borehole.
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APPENDIX

This appendix provides some of the mathematical details omitted in the 
main text and derived displacement fields for the two-dimensional case.

A) Proof of equation (9). The following abbreviation should be 
understood throughout this derivation:

Using equations (2), (3), and (6), the following displacement and stress 
components can be derived.

1. Inside the fluid:
U' = D J'(J?r) r p p v<^

Prr = '

P ' = P' = 0 
rz r9
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2. In the surrounding medium

Co i

(A-2)

I r

24



Substituting equations (A-l) and (A-2) into equation (6) with r = a and 
utilizing equation (10), equations (8) and (9) can be obtained.

B. Derivation of equations (11), (12), and (13).   The derivation of 
equations (11), (12), and (13) requires a good deal of algebra. The 
derivative formula I used for the coefficients of the determinant is the 
following.

f T*  *- r

The expansion of the Hankel functions can be written, when P > 1, as:

/

As mentioned in the main text, the expansion of the Hankel function 
should include the second term in order to get non-zero determinant, when p >. 
1. For the Hankel function order 1, which appears in the zero order (p - 0) 
solution,

was used.

The approximate coefficients, which are valid under the assumption that 
the radius of the borehole is very small compared to the wavelength of 
interest, are shown below.

Let's define:  

(9. -  ^
p 

7T '

25



When p = 0, the leading term of the matrix elements are given by

gn ° -^i

g13 -o

g21 =

2 2 g22 = (k - n )nS 1

g23 - 0

g31 - 0 (A-3) 

g32 = 0 

g33 =

2mQ 1 /a

g43

The determinant of the zero-order of G , A , is given byP o

(A~4)

Applying Cramer's rule to equation (8) with equations (A-2) and A-3), equation 
(11) can be obtained.

26



When p = 1, as mentioned in the main text, the leading term of the 
determinant is:

where A., is the minor of g...

Therefore, the following matrix elements are required to solve equations 
for A, B, and C.

(A-5)

a.

<74V ^
/

(, -H 2(/ -

27



The dominant term of determinant A is given by:

(A-6)

Applying Cramer's rule to equation (8) with equations (A-5) and (A-6), 
equation (12) can be obtained.

When p = 2, the procedures are identical to the case of p = 1. The 
necessary element of the determinant is given by:

V>»A
z,

(A-7)

-a* Q*
CL

{'

(' )

a.

/

7T-)

</.
-jx! -£/> S^

« /Vx
c7^3 = /

£^±_ )
/^ -/

28



The dominant term of the determinant A is given by:

(A-8)

Applying Cramer's rule to equation (8) with equations (A-7) and (A-8), 
equation (13) can be obtained.

   Derivation of equation (15).   The leading terms of the displacement 
fields when the observation point is very far from the source are, from 
equation (2):

T '

Using the relation of equation (14), the far-field displacements are

r  /? ,
(A-10)

/f

29



By the coordinate transformation, the displacement field in the spherical 
coordinate system is:

« (J /&s

(A-ll)

Substituting equation (A-10) into (A-ll) and utilizing the property of the 
solution matrix shown in equations (11), (12), and (13), equation 15 can be 
derived.

D. Two-dimensional case. In the two-dimensional wave propagation in the 
X-Y plane, the two scalar potentials are needed to describe the displacement 
field. It can be written as follows from equation (1):

(A-12)

The formal solution of equation (A-12) could be written as:

of
(A-13)

X ~

In the two-dimensional case, the source function is defined by;

OD

with

The coefficients A and C are the solution of the following equation.

\ j r&

30



The coefficients of g could be obtained by k  > 0 in equation (9).

Following the same procedures in the main text, the coefficient of A and
C can be derived and it is shown as: 
P

6 (A-14)

Q,

31



In equation (A-14), the matrix elements with a parenthesis denote the 
terms which change the algebraic sign when p is negative.

The far-field displacement can be derived utilizing the following 
formulae:

O *^ ~

U*
with 37"

(A-15)

The far-field displacement fields were obtained by substituting equation 
(A-14) into equation (A-15). The desired displacements are given below.

1) T (0) is given and defined as T (0) - T

/ y-
ft*

(A-16)

32



2) TA (9) is given and defined as T_(9) = T95 (9).f 0

/"* ^> /3 *& fi"\

/

When the normal stresses act on at 9 = 0 and 9 = 180° with equal 
magnitude, then the radial and tangential displacement can be written as

xs.

U+ = Ur

e
(A-18)

T

Here the following relation was used.
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The displacements shown in equation (A-18) are identical to those of White 
(1960), who derived the same equation using the seismic reciprocity theorem.

E. Source description. Let f s define spatial Fourier transform as:

and its inverse Fourier transform as:

The source located at r = a and z = 0 can be written as:

(A-19)

Therefore, using complex Fourier analysis and Fourier transfer of 6(z), we can 
write equation (A-19) as:

-^4 J *x>
  2H, £ C

F>--Sft i

with

Let f s define other source distribution such as

where

= 0 otherwise. 

Using the following relation,

 a)
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we can show that

As far as the far-field displacement field is concerned, the contribution 
of the source T* can be evaluated by substituting k «  k cos0 or kgsin0 
depending on the wave type considered.

Let's use k ,sin0 for k.

Then,

Using the following formula:

This implies that as long as ou « 23/d, we can treat the distributed source 
in the z-direction as a point source at z «  0.
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